Lecture 7:

Wavefront Sensing

Claire Max Astro 289C, UCSC February 2, 2016

Outline of lecture

General discussion: Types of wavefront sensors

- Three types in more detail:
 - Shack-Hartmann wavefront sensors
 - Curvature sensing
 - Pyramid sensing

At longer wavelengths, one can measure phase directly

- FM radios, radar, radio interferometers like the VLA, ALMA
- All work on a narrow-band signal that gets mixed with a very precise "intermediate frequency" from a local oscillator
- Very hard to do this at visible and near-infrared wavelengths
 - Could use a laser as the intermediate frequency, but would need tiny bandwidth of visible or IR light

At visible and near-IR wavelengths, measure phase via intensity variations

- Difference between various wavefront sensor schemes is the way in which phase differences are turned into intensity differences
- General box diagram:

How to use intensity to measure phase?

• Irradiance transport equation: A is complex field amplitude, z is propagation direction. (Teague, 1982, JOSA 72, 1199)

Let
$$A(x, y, z) = [I(x, y, z)]^{1/2} \exp[ik\phi(x, y, z)]$$

• Follow I(x,y,z) as it propagates along the z axis (paraxial ray approximation: small angle w.r.t. z)

$$\frac{\partial I}{\partial z} = -\nabla I \bullet \nabla \phi - I \nabla^2 \phi$$
 Curvature: Sensors

Wavefront tilt: *
Hartmann sensors

Types of wavefront sensors

- "Direct" in pupil plane: split pupil up into subapertures in some way, then use intensity in each subaperture to deduce phase of wavefront. Sub-categories:
 - Slope sensing: Shack-Hartmann, lateral shear interferometer, pyramid sensing
 - Curvature sensing
- "Indirect" in focal plane: wavefront properties are deduced from whole-aperture intensity measurements made at or near the focal plane. Iterative methods calculations take longer to do.
 - Image sharpening, multi-dither
 - Phase diversity, phase retrieval, Gerchberg-Saxton (these are used, for example, in JWST)

How to reconstruct wavefront from measurements of local "tilt"

Figure 7 (a) Local tilt as a function of sampling location in pupil; (b) reconstructed wavefront estimate.

Shack-Hartmann wavefront sensor concept - measure subaperture tilts

Credit:

A. Tokovinin

Example: Shack-Hartmann Wavefront Signals

Credit: Cyril Cavadore

Displacement of centroids

Definition of centroid

$$\overline{x} \equiv \frac{\iint I(x,y) x \, dxdy}{\iint I(x,y) dxdy}$$

$$\overline{y} \equiv \frac{\iint I(x,y) y \, dxdy}{\iint I(x,y) dxdy}$$

- Centroid is intensity weighted
- Each arrow represents an offset proportional to its length

Credit: Cyril Cavador

Page 10

Credit: Boston Micromachines

Reminder of some optics definitions: focal length and magnification

Focal length f of a lens or mirror

Magnification

$$M = y'/y = -s'/s$$

Displacement of Hartmann Spots

Quantitative description of Shack-Hartmann operation

 Relation between displacement of Hartmann spots and slope of wavefront:

$$\Delta \vec{x} \propto \nabla_{\perp} \phi(x, y)$$
$$k\Delta \vec{x} = M f \nabla_{\perp} \phi(x, y)$$

where $k = 2\pi / \lambda$, Δx is the lateral displacement of a subaperture image, M is the (de)magnification of the system, f is the focal length of the lenslets in front of the Shack-Hartmann sensor

Example: Keck adaptive optics system

- Telescope diameter D = 10 m,
 M = 2800 ⇒ size of whole lenslet array
 = 10/2800 m = 3.57 x 10⁻³ m = 3.57mm
- Lenslet array is approx. 18 x 18 lenslets ⇒ each lenslet is ~ 200 microns in diameter
- ✓ Sanity check: size of subaperture on telescope mirror = lenslet diameter x magnification = 200 microns x 2800 = 56 cm ~ r₀ for wavelength λ between 1 and 2 microns

Some examples of micro-lenslet arrays

Keck AO example, continued

- Now look at scale of pixels on CCD detector:
 - Lenslet array size (200 microns) is larger than size of the CCD detector, so must put a focal reducer lens between the lenslets and the CCD: scale factor 3.15
- Each subaperture is then mapped to a size of 200 microns ÷ 3.15 = 63 microns on the CCD detector
- Choose to make this correspond to 3 CCD pixels (two to measure spot position, one for "guard pixel" to keep light from spilling over between adjacent subapertures)
 - So each pixel is 63/3 = 21 microns across.
- Now calculate angular displacement corresponding to one pixel, using

$$k\Delta \vec{x} = M f \nabla_{\perp} \phi(x, y)$$

Keck AO example, concluded

- Angle corresponding to one pixel = $\Delta z/\Delta x$ where the phase difference $\Delta \phi = k \Delta z$.
- $\Delta z / \Delta x = (pixel size x 3.15) \div (2800 x 200 x 10)$
- Pixel size is 21 microns.
- $\Delta z / \Delta x = (21 \times 3.15) \div (2800 \times 2000) = 11.8 \text{ microradians}$
- Now use factoid: 1 arc sec = 4.8 microradians
- $\Delta z / \Delta x = 2.4$ arc seconds.
- So when a subaperture has 2.4 arc seconds of slope across it, the corresponding spot on the CCD moves sideways by 1 pixel.

How to measure distance a spot has moved on CCD? "Quad cell formula"

$$\delta_{x} \cong \frac{b}{2} \left[\frac{(I_{2} + I_{1}) - (I_{3} + I_{4})}{(I_{1} + I_{2} + I_{3} + I_{4})} \right]$$

$$\delta_{y} \cong \frac{b}{2} \left[\frac{(I_{3} + I_{2}) - (I_{4} + I_{1})}{(I_{1} + I_{2} + I_{3} + I_{4})} \right]$$

Disadvantage: "gain" depends on spot size b which can vary during the night

$$\delta_{x,y} = \frac{b \ (difference \ of \ I's)}{2}$$

$$(sum \ of \ I's)$$

Question

What might happen if the displacement of the spot
 radius of spot? Why?

Signal becomes nonlinear and saturates for large angular deviations

"Rollover" corresponds to spot being entirely outside of 2 quadrants

Measurement error from Shack-Hartmann sensing

• Measurement error depends on size of spot as seen in a subaperture, θ_b , wavelength λ , subaperture size d, and signal-to-noise ratio SNR:

$$\sigma_{S-H} = \frac{\pi^2}{2\sqrt{2}} \frac{1}{SNR} \left[\left(\frac{3d}{2r_0} \right)^2 + \left(\frac{\vartheta_b d}{\lambda} \right)^2 \right]^{1/2} \text{ rad for } r_0 \le d$$

$$\sigma_{S-H} \cong \frac{6.3}{SNR}$$
 rad of phase for $r_0 = d$ and $\vartheta_b = \frac{\lambda}{d}$

Order of magnitude, for $r_0 \sim d$

• If we want the wavefront error to be $< \lambda/20$, we need

$$\Delta z \equiv \frac{\sigma}{k} < \frac{\lambda}{20}$$
 or $\sigma \cong \frac{6.3}{SNR} < \frac{2\pi}{20}$ so that SNR > 20

General expression for signal to noise ratio of a pixelated detector

- S = flux of detected photoelectrons / subap
 - n_{pix} = number of detector pixels per subaperture
 - R = read noise in electrons per pixel
- The signal to noise ratio in a subaperture for fast CCD cameras is dominated by read noise, and

$$SNR \approx \frac{St_{\text{int}}}{(n_{pix}R^2/t_{\text{int}})^{1/2}} = \frac{S\sqrt{t_{\text{int}}}}{\sqrt{n_{pix}R}}$$

See McLean,
"Electronic Imaging in
Astronomy", Wiley

We will discuss SNR in much more detail in a later lecture

Trade-off between dynamic range and sensitivity of Shack-Hartmann WFS

- If spot is diffraction limited in a subaperture d, linear range of quad cell (2x2 pixels) is limited to $\pm \lambda_{ref}/2d$.
- Can increase dynamic range by enlarging the spot (e.g. by defocusing it).
- But uncertainty in calculating centroid

 ∝ width x N_{ph}^{1/2} so centroid calculation will be less accurate.
- Alternative: use more than 2x2 pixels per subaperture. Decreases SNR if read noise per pixel is large (spreading given amount of light over more pixels, hence more read noise).

Correlating Shack-Hartmann wavefront sensor uses images in each subaperture

• Solar adaptive optics: Rimmele and Marino http://solarphysics.livingreviews.org/Articles/lrsp-2011-2/

- Cross-correlation is used to track low contrast granulation
- Left: Subaperture images, Right: cross-correlation functions

Curvature wavefront sensing

• F. Roddier, Applied Optics, 27, 1223- 1225, 1998

$$\frac{I_+ - I_-}{I_+ + I_-} \sim \nabla^2 \phi - \frac{\partial \phi}{\partial \vec{r}} \vec{\delta}_R$$
 Normal derivative at boundary

Laplacian (curvature)

Wavefront sensor lenslet shapes are different for edge, middle of pupil

- Example: This is what wavefront tilt (which produces image motion) looks like on a curvature wavefront sensor
 - Constant I on inside
 - Excess I on right edge
 - Deficit on left edge

Simulation of curvature sensor response

Credit: G. Chanan

Page 29

Curvature sensor signal for astigmatism

Difference Image

Practical implementation of curvature sensing

- Use oscillating membrane mirror (2 kHz!) to vibrate rapidly between I₊ and I₋ extrafocal positions
- Measure intensity in each subaperture with an "avalanche photodiode" (only need one per subaperture!)
 - Detects individual photons, no read noise, QE ~ 60%
 - Can read out very fast with no noise penalty

Measurement error from curvature sensing

• Error of a single set of measurements is determined by photon statistics, since detector has NO read noise!

$$\sigma_{cs}^2 = \pi^2 \frac{1}{N_{ph}} \left(\frac{\theta_b d}{\lambda} \right)^2$$

where d = subaperture diameter and N_{ph} is no. of photoelectrons per subaperture per sample period

• Error propagation when the wavefront is reconstructed numerically using a computer scales poorly with no. of subapertures N:

 $(Error)_{curvature} \propto N$, whereas $(Error)_{Shack-Hartmann} \propto log N$

Question

- Think of as many pros and cons as you can for
 - Shack-Hartmann sensing
 - Curvature sensing

Advantages and disadvantages of curvature sensing

Advantages:

- Lower noise ⇒ can use fainter guide stars than S-H
- Fast readout ⇒ can run AO system faster
- Can adjust amplitude of membrane mirror excursion as "seeing" conditions change. Affects sensitivity.
- Well matched to bimorph deformable mirror (both solve Laplace's equation), so less computation.
- Curvature systems appear to be less expensive.

Disadvantages:

- Avalanche photodiodes can fail if too much light falls on them. They are bulky and expensive.
- Hard to use a large number of avalanche photodiodes.
- BUT recently available in arrays

Review of Shack-Hartmann geometry

Pyramid sensing

• From Andrei Tokovinin's tutorial

Image plane

Pupil plane

Pyramid for the William Herschel Telescope's AO system

Credit: Iuliia Shatokhina et al.

Pyramid sensor reverses order of operations in a Shack-Hartmann sensor

Figure 3- 4: Organization of SH wavefront data (left) versus pyramid wavefront data (right). The circle indicates the beam footprint on the WFS. The heavily-weighted squares on the left indicate the various subapertures (8x8 grid of subapertures). Each subaperture has 4 pixels (a quad cell). In a pyramid wavefront sensing scheme, each pixel represents a subaperture; the 4 images of the pupil correspond to the quadrants of the quad cell.

Here's what a pyramidsensor meas't looks like

Courtesy of Jess Johnson

Potential advantages of pyramid wavefront sensors

- Wavefront measurement error can be much lower
 - Shack-Hartmann: size of spot limited to λ / d, where d is size of a <u>sub</u>-aperture and usually d ~ r_0
 - Pyramid: size of spot can be as small as λ / D, where D is size of whole telescope. So spot can be D/r₀ = 20 100 times smaller than for Shack-Hartmann
 - Measurement error (e.g. centroiding) is proportional to spot size/SNR. Smaller spot = lower error.
- Avoids bad effects of charge diffusion in CCD detectors
 - Fuzzes out edges of pixels. Pyramid doesn't mind as much as S-H.

Potential pyramid sensor advantages, continued

- Linear response over a larger dynamic range
- Naturally filters out high spatial frequency information that you can't correct anyway

Summary of main points

- Wavefront sensors in common use for astronomy measure intensity variations, deduce phase. Complementary.
 - Shack-Hartmann
 - Curvature sensors
- Curvature systems: cheaper, fewer degrees of freedom, scale more poorly to high no. of degrees of freedom, but can use fainter guide stars
- Shack-Hartmann systems excel at very large no. of degrees of freedom
- New kid on the block: pyramid sensors
 - Very successful for fainter natural guide stars